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Stéfan Engelen and Fariza Tahi*

IBISC laboratory CNRS FRE 3190, University of Evry/Genopole, 523 place des Terrasses, 91000 Evry, France

Received May 28, 2009; Revised October 30, 2009; Accepted November 2, 2009

ABSTRACT

Predicting RNA secondary structures is a very
important task, and continues to be a challenging
problem, even though several methods and algo-
rithms are proposed in the literature. In this article,
we propose an algorithm called Tfold, for predicting
non-coding RNA secondary structures. Tfold takes
as input a RNA sequence for which the secondary
structure is searched and a set of aligned homolo-
gous sequences. It combines criteria of stability,
conservation and covariation in order to search for
stems and pseudoknots (whatever their type).
Stems are searched recursively, from the most to
the least stable. Tfold uses an algorithm called
SSCA for selecting the most appropriate sequences
from a large set of homologous sequences (taken
from a database for example) to use for the predic-
tion. Tfold can take into account one or several
stems considered by the user as belonging to the
secondary structure. Tfold can return several struc-
tures (if requested by the user) when ‘rival’ stems
are found. Tfold has a complexity of O(n2), with
n the sequence length. The developed software,
which offers several different uses, is available on
the web site: http://tfold.ibisc.univ-evry.fr/TFold.

INTRODUCTION

Non-coding RNAs play an important role in the regula-
tion of various biological processes. Determining the
structure of an RNA is a very important task. There
are experimental methods for this purpose, such as
crystallography, NMR, etc. But because of the high cost
(in time and money) of these experimental methods,
in silico methods are largely required by biologists.
However, creating three-dimensional (3D) structural
models of RNA remains a big challenge and very few
solutions are proposed in literature (1–3). On the other

hand, several in silico methods are proposed for predicting
the secondary structure of RNA. There are methods using
a single RNA sequence and also using multiple sequences.
Most algorithms implementing the first approach use
thermodynamic parameters defined by Turner Lab (4).
These parameters have been improved in (5). Among the
proposed algorithms, we can cite Mfold (6), the best
known and most widely used software for predicting the
secondary structure of one sequence. It is based on
dynamic programming and has a complexity of O(n3),
where n is the sequence length. This approach is based
on the principle that the most stable secondary structure
is the one having the minimal free energy. But some
hypotheses state that, due to kinetic reasons, the real
RNA secondary structure often has a local instead of a
global minimum free energy (7). New algorithms take into
account these kinetic features in order to minimize free
energy in a local area. In this way, many algorithms try
to simulate RNA folding processes by iteratively adding
stems rather than pairings (8,9). Among algorithms using
multiple sequences, we can cite Pfold (10), based
on context-free grammars, with a complexity of O(n3).
We can also cite RNAalifold (11), which integrates
thermodynamic and phylogenetic information in a
modified energetic model for predicting a common sec-
ondary structure of a set of homologous sequences with
a time complexity of O(n3). Other new methods combine
covariation and thermodynamic information using
support vector machine methods with feature vectors
which combine covariation and thermodynamic informa-
tion (12,13).
In some RNA secondary structures, there are particular

elements called pseudoknots. Pseudoknots correspond to
two interleaved helices and are sometimes considered as a
step towards the 3D structure. Due to high complexity,
very few methods are proposed for searching for
pseudoknots, and most of them search for specific types
of pseudoknots. The iterative stem adding strategy helps
to reduce the search space and deal with pseudoknotted
structures (8,9,14). Iterated loop matching (ILM) (14),
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which uses this strategy, is based on dynamic program-
ming and can be used for a search of pseudoknots with
an average time complexity of O(n3) and a worst complex-
ity of O(n4). An algorithm which folds the secondary
structure hierarchically with a time complexity of O(n3)
is described in (15). This algorithm searches for a
pseudoknot free secondary structure before trying to
establish a pseudoknotted secondary structure.
In (16,17), we proposed an algorithm based on a com-

parative approach, which searches for conserved
stems in a given alignment of homologous sequences.
The algorithm, called DCFold, uses simple metrics to
measure conservation and covariation of stems. It
searches for the stems hierarchically from most stable to
least stable, by subdividing the sequences (‘divide and
conquer’ approach). Its complexity is of O(n2), with n
the sequence length. This algorithm, because of the
divide and conquer approach, cannot locate pseudoknots.
In (18,19), we proposed an algorithm called P-DCFold
(extension of DCFold), which can search for stems and
pseudoknots with the same complexity of O(n2).
An important problem in the approach based on

multiple sequences is that the prediction results strongly
depend on the homologous sequences used and on the
quality of the alignment. In order to avoid this depen-
dency, some algorithms propose to align the sequences
and search for a common secondary structure at the
same time. Because of time complexity, they use very
few sequences. For instance, caRNAc (20), Foldalign
(21), Dynalign (22,23), PARTS (24) and RAF (25) align
and predict a common secondary structure of two homol-
ogous sequences with a complexity of O(n6). Other algo-
rithms aim to improve prediction of RNA secondary
structure by detecting conserved stems in alignments (26).
In (27), we proposed an original algorithm, called

SSCA, which selects, from a large set of aligned homolo-
gous sequences (taken from a database for example), a
subset of sequences that would be the most informative
when performing the secondary structure prediction.
SSCA is available on the web site: http://tfold.ibisc
.univ-evry.fr/SSCA/.
In this article, we present an algorithm and an online

software called Tfold, for predicting non-coding RNA
secondary structures. This algorithm efficiently combines
the SSCA algorithm and a new version of P-DCFold algo-
rithm. The general principle of P-DCFold is preserved
(search for stems including pseudoknots using ‘divide
and conquer’ method). But almost all steps of the algo-
rithm were improved. Tfold considers, besides length,
conservation and covariation criteria, new stem selection
criteria based on simplified and empirical stability rules.
Tfold can return several structures, when there are ‘rival’
stems (overlapping stems) with close scores. Tfold allows
errors (insertions, deletions and substitutions) in stems in
the homologous sequences. Tfold can take into account
stems set by the user, which are then considered as
anchoring points.
Tfold was tested on several RNAs, some of them with

pseudoknots: tRNA (28), 5S RNA (29), U1 RNA (30), srp

RNA (31), tmRNA (32,33), RNase P (34), 16S RNA (35)
and 23S RNA (36). The results were very satisfactory.
Tfold was evaluated and compared with several existing
tools for RNA secondary structure prediction: Mfold (6),
RNAalifold (11,37), Pfold (10,38), ILM (14,39) and
caRNAc (20,40). This article is organized as follows: in
the first section, we describe our Tfold algorithm; then, we
present and discuss some results obtained with Tfold,
compared with existing software for RNA secondary
structure prediction.

Description of Tfold algorithm

The Tfold algorithm, composed of several steps and
procedures, is as follows:

Algorithm Tfold (sequence S, alignment A)
Begin
� C Sequences�selectionðS,AÞ
� For each combination Jk of Nt sequences among

sequences of C
J J[ Jk
Ek Stems�searching (S, Jk)
E E[Ek

End for
� SS Common�predictionðE, JÞ
� return SS

End

Tfold takes as input a RNA sequence S, called ‘target
sequence’, for which we wish to predict a secondary struc-
ture, and a set A of aligned sequences representing the
homologous sequences to use, called ‘test sequences’.
The first step in Tfold is to get from the sequences of A
a subset of best sequences to use for the prediction of the
secondary structure SS of S (Sequences selection proce-
dure). Then, for each combination Jk of Nt sequences
among these sequences, a secondary structure is predicted
for the target sequence (Stems searching procedure). Nt

represents the number of homologous sequences needed
by Stems searching procedure for searching for stems in
the target sequence S. This parameter is set by the user.
However, we consider its optimal value as equal to
1/AV(S,C), where AV is the average variability of
sequences of C in comparison with S (the variability of
a sequence S0 in comparison with a sequence S is the
number of differences between S and S0, divided by the
length of S). For instance, if this average variability is of
25%, Nt would be set to 4. Finally, the last step of Tfold
consists in selecting the stems which occur in a minimal
number of predictions, in order to obtain the optimal
structure (Common prediction procedure).

We describe below the different steps of the Tfold
algorithm.

Sequence selection

Predicting RNA secondary structure using multiple
sequences implies the use of a set of aligned homologous
sequences. Nowadays, there are many RNA databases
containing large numbers of homologous RNA sequences.
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But the choice of sequences is very important, since the
prediction results strongly depend on these sequences.

The Sequences selection procedure selects the most
informative homologous sequences for predicting the sec-
ondary structure of a given RNA sequence. It uses an
algorithm that we previously developed called SSCA
(27,41). SSCA takes as input a target RNA sequence and
a set of aligned homologous sequences, and returns a clas-
sification of the homologous sequences according to their
‘interest’ towards the target sequence. It uses covariation
constraints between each homologous sequence and the
target sequence. These constraints are of two types: con-
straints of variability and constraints of stem alignment.
The variability constraints depend on the quality of the
alignment of the two considered sequences (percentage of
ambiguous and indeterminate bases) and the percentage of
identity and deletion between them. By default, we set the
percentage of ambiguous bases to 0%, homology to 75%
and deletion to 1%; but these parameters can be modified
by the user. The stem alignment constraints are based on
the stability of GC base pairs (11), the stability of GU
intermediate state (42), and the fact that transitions occur
more easily than transversions (43).

The general principles of SSCA are as follows (the
reader can refer to (27) for more details):

. For the target sequence St, build a model Mt repre-
senting the ideal homologous sequence, according to
the above constraints.

. For each homologous sequence Sh:
� Calculate its substitution matrixMh according to St.
� Calculate its score by comparing its substitution

matrix Mh to the model Mt.
. Classify the sequences Sh according to their score.

Once the sequences are classified by SSCA, the subset of
sequences from the top of the classification are then used
for the prediction. By default the (10) best scoring
sequences are considered; but the user can also select
sequences with a percentage of homology varying
between two given values.

Stems searching

Stems are searched recursively, from most important to
least important (according to criteria), by subdividing
the sequence into smaller and smaller subsequences
(divide and conquer approach).

The first version of the algorithm, called DCFold, was
published in (16,17). Stems were selected using length,
conservation and covariation as criteria. In DCFold,
pseudoknots are not searched: the subdivision of the
sequence is possible only if all stems are compatible, i.e.
they are disjoint or included (one in the other) (Figure 1).

Then we extended DCFold and proposed an algorithm,
called P-DCFold, which includes a method for searching
pseudoknots (18,19). The principles of P-DCFold
algorithm are as follows [more details can be found
in (17,19)]:

. Stems satisfying length criteria are searched for in the
target sequences St.

. The conservation of each selected stem in the
different homologous sequences is verified; a score
of covariation is then associated to each conserved
stem.

. If no stems are selected in the previous step, stem
conservation is verified only in homologous sequences
with length close to the target sequence length
(treatment of variable areas, i.e. areas with many
deletions).

. When two stems are incompatible (i.e. overlap), both
stems are eliminated if they have the same score; oth-
erwise, the one having the lowest score is eliminated.
The obtained stems form a set of ‘anchoring points’.

. The target sequence is subdivided into subsequences
using the set of anchoring points; other stems are
then searched in each subsequence.

. Finally, once all compatible stems satisfying our
criteria are selected, pseudoknots are searched for.

Since the original publications, we performed several
improvements and extensions of the algorithm. The step
of anchoring points searching (i.e. the search for
conserved compatible stems) was largely changed and
improved. Thus:

. Our stem selection now includes new criteria based on
stem stability.

. Errors (deletions, loops and bulges) are now allowed
in stems in the test sequences.

. Several possible structures can be returned by the algo-
rithm when there are incompatible stems with close
scores.

. A set of stems considered as belonging to the target
sequence can be set by the user. These stems will be
considered by the algorithm as anchoring points.

Below, we describe the principal steps of stem search-
ing in Tfold, focusing on these extensions and
improvements.

Stem searching in target sequence. Stems are searched for
in the target sequence using length criteria combined with
stability criteria. Only stems that are sufficiently long (to be
pertinent) and that satisfy stem stability rules are selected.
We set the threshold of stem length to log4ðnÞ (17) where n is
the length of the sequence, and we consider stability rules

Figure 1. When two stems are comparable (i.e. they do not share nucleotides), they can be: disjoint (A), included (B) or interlaced (C). When two
comparable stems are interlaced, they form a pseudoknot; otherwise they are compatible.
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which are simple empirical rules based on Tinoco parame-
ters (44). These rules are related to:

. Type of stem pairings: GC pairings are more stable
than AU pairings which in turn are more stable than
GU pairings (4). Besides, the position of GU pairings
in the stem has an effect on the stem stability (42): the
stem is more stable (i) when there is a purine on 50 of
GU (configuration R50GU) rather than when there is a
pyrimidine on 50 of GU (configuration Y50GU), and
(ii) when there is a loop on 50 of GU (configuration
L50GU, L: a loop) rather than when there is a loop on
30 of GU (configuration L30GU).

. Type of the mis-pairing delimiting the beginning and/
or the end of a stem: when it is GA or AA, the stem is
more stable (45).

. Size and type of the terminal loops: a stem is more
stable when the formed loop is a tetra-loop of type
GNRA, UNCG or CUYG (N: any base) (46).

Tfold algorithm uses a matrix M of size (n, n) where the
target sequence, namely St, of length n, is compared
with itself in a reversed way (note that we consider only
half of the matrix since it is symmetric). For each i, j
from 1 to n:

M½i, j� ¼
M½i� 1, j� 1� þ sði, jÞ if sði, jÞ > 0
0 otherwise

�

where s(i, j) is the score attributed to M[i, j] and depending
on the pairing (St(i), St( j )). s(i, j) is set to: (i) 3 if it is a GC
pairing; (ii) 2 if it is a AU pairing or a GU pairing in the
configurations R50GU or L50GU; (iii) 1 if it is a GU
pairing in the configurations L30GU or Y50GU; (iv) 0
otherwise.
The obtained score s(i, j ), when it is greater than 0, is

increased by 1 when: (i) s(i� 1, j� 1)=0 and (St(i� 1),
St( j� 1)) forms a pairing AG or AA in the configurations
H50GA or H50AA (H: a helix or stem); (ii)
s(i+1, j+1)=0 and (St(i+1), St( j+1)) forms a
pairing GA or AA in the configurations H50GA or
H50AA. It is also increased by 2 when: s(i+1, j+1)=0
and the obtained stem forms a loop of size 4 (tetra-loop)
of the form: GNRA, UNCG or CUYG. The score of
the last pairing of the stem defines the global score of
the stem.
We then select the stems having a global score greater or

equal to 2*log4(n) in order to retain those sufficiently long
and stable. We add the factor 2 to the length criteria
because the average stability score of a pairing is equal
to 2 (GC=3, AU=2 and GU=1). The other used
scores (related to stems and loops configuration) are con-
sidered as bonus.

Stem searching in homologous sequences. Stems are
selected by our algorithm only if they are conserved in
the homologous sequences and if their covariation score
is sufficiently high.

Stem conservation. Once the stems are determined in the
target sequence St, we verify their conservation in the
homologous sequences. The principle is as follows: let b,

e and l, respectively, be the position of the first strand, the
position of the second strand and the length of a selected
stem X in the sequence St. For each homologous sequence
Sh, we consider the subsequence Sh[b� d, b+ l+ d] and
the reversed subsequence of Sh[e� d, e+ l+ d] where d
represents a gap; we compare and align them using a
score matrix A of length [l+2d, l+2d] (dynamic pro-
gramming approach). The score s(i, j) of A[i, j] is equal
to: (i) s(i, j� 1)+ the score of an insert; (ii) s(i� 1, j)+
the score of a deletion; and (iii) s(i� 1, j� 1)+ the score
of the pairing (i, j).

Thus, stems with bulges and internal loops are consid-
ered. We set a score of �1 for an insert or a deletion and
�2 for a base pair that is not a GC, AU or GU pairing.
For the latter, we set the same scores as the ones used
above (‘stem searching in target sequence’ section): +3
for GC, +2 for AU and for GU in the configurations
R50GU or L50GU, and +1 for GU in the configurations
L30GU or Y50GU.

The global score is then augmented in the case of par-
ticular loops and/or particular stem ends, as described
above in ‘stem searching in target sequence’ section.
Later, we deduce a conservation score for the stem X in
the sequence Sh: it is equal to the best score in the matrix
A. Finally, we consider that a stem is conserved in all
homologous sequences if its conservation score in each
of the homologous sequences is �2*log4(n).

Stem covariation. If a stem X is conserved in all homol-
ogous sequences, we compute its covariation score, the
number of mutations Nmut=2*Ncomp+Ncons�Nerr,
where Ncomp is the number of compensatory mutations
(conserved pairings with double mutations), Ncons the
number of substantial mutations (conserved pairings
with one mutation) and Nerr the number of errors (non-
conserved pairings).

With this equation, we favour conserved stems with
high level of covariation (many compensatory mutations).
We take into account stems conserved with errors
(as explained above), but errors are discriminated.

A stem X of length l is then selected if the rate N/l is �1,
i.e. if it has in average at least one mutation per base.
However, we have observed in RNA structures that
some stems could be very long and highly conserved, i.e.
with very low covariation. We therefore established
another selection criteria, favouring stem length: a stem
X of length l is selected if Nmut+ l is �2*log4(n). This
second criterion is used when no stems are selected with
the first one.

User stem insertion. When a biologist uses a tool for
predicting the secondary structure of a given RNA
sequence, he usually already knows one or several stems
of the secondary structure. Consequently, he would like to
have the possibility to set these stems on the secondary
structure. An important improvement of Tfold is the
possibility to take into account this kind of information,
and even better, to benefit from this information and
improve the predictions.

In the case where the user sets stems, these are consid-
ered by Tfold as anchoring points. They are inserted in the

2456 Nucleic Acids Research, 2010, Vol. 38, No. 7

 by guest on N
ovem

ber 22, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


set of selected conserved stems and are assigned a maximal
score. Thus, they are always kept in the different steps
of the algorithm and the selection for other stems is per-
formed according to these stems.

Variable area treatment. It is important to find at least
one anchoring point stem, so that the search for other
stems can be performed; otherwise, the process stops. In
some cases, no conserved stems can be found. This can
occur, for instance, when at least some of the sequences
used present areas with high variability (generally areas at
the structure periphery, where stems are less conserved
than in the heart).

To solve this problem, we have implemented a proce-
dure for the treatment of variable areas, and more partic-
ularly regions where there are many insertions/deletions.
When no anchoring point is found, the comparison step is
relaunched by considering only the homologous sequences
of length close to the target sequence length. However, a
stem is selected only if it is conserved in at least three
homologous sequences.

Note that if the user has set at least one stem, this
procedure is not necessary (at least at the first stage of
the recursion), even when no conserved stems are found
by Tfold, since the stems set by the user allow the subdi-
vision of the sequence.

Stem incompatibility treatment. An important step in our
algorithm is to verify the compatibility of the selected
stems (conserved stems with sufficiently high scores) and
to treat possible incompatibilities. The compatibility
between all stems is an important condition to be able
to subdivide the sequence for searching for further stems
(as described below in ‘sequence subdivision’ section).

In the initial version of the compatibility treatment
procedure (17), when two stems are incompatible, we
keep the one having the highest score, and in case they
have the same score (i.e. are in conflict), both are
eliminated. In Tfold, we have implemented a new proce-
dure which treats conflicts between stems in another way:
it keeps the two stems and proposes two alternative sets of
anchoring points, each set allowing the subdivision of the
sequence in two different ways, before searching for two
different sets of stems. Therefore, k+1 alternative struc-
tures are predicted with k the number of conflicts.

Two incompatible stems are considered in conflict
when they have close scores. The resolution of the
notion of ‘close scores’ is a parameter that can be set by

the user. By default, it is equal to zero, which means that
two stems are considered in conflict only when they have
equal scores. Obviously, increasing this parameter value
increases the number of alternative structures.
On our system interface, the user can choose between

predicting only one secondary structure or several possible
ones (alternative structures). In the second case, he has
to set the maximum number of structures he would like
to get.

Sequence subdivision. Once a set of anchoring points is
selected, it is used for subdividing the target sequence
into smaller sequences where other stems (with necessarily
lower scores) are searched for. A given stem X allows the
subdivision of a sequence into two subsequences where
other stems compatible with X can be searched for: the
internal subsequence of X and the concatenation of the
two external subsequences of X. When there are several
anchoring points, we obtain different subsequences. In
order to avoid redundancies in the subsequence treatment
(search for new stems), these subsequences are considered
in a certain way, as described in Figure 2 [refer to (17)
for more details].

Pseudoknot search. The search for pseudoknots is per-
formed only once when all compatible stems of the
target sequence are selected. Let E1 be this set of stems.
The pseudoknot searching procedure consists in searching
for compatible stems in a new sequence, the target
sequence without stems of E1. Let E2 be the new set of
selected stems. Since they are not previously selected, E2

stems are necessarily incompatible with stems of E1, and
thus form pseudoknots with them.
With this method, all kinds of pseudoknots are

searched, even complex ones. Our algorithm is able to
search for pseudoknots composed of several incompatible
stems; they are called k-pseudoknots, where k represents
the number of stems (all incompatible with each other)
making up the pseudoknot. Most of known pseudoknots
are 2-pseudoknots (simple pseudoknots), but we can cite
the 3-pseudoknot of Eschericha coli a-operon tmRNA
(47–49). The 3-pseudoknots are searched for as follows:
we consider the target sequence without stems of E1 and
E2 where stems are searched for. The new selected stems
are incompatible with stems of E1 and E2, making up
3-pseudoknots. This recursive process can thus be
followed until no stems are found. The level k of the last
step of the recursion gives the highest complexity level of

Figure 2. The ‘divide and conquer’ approach applied on a sequence S with a set of selected stems (anchoring points): S is subdivided into several
subsequences [S2, S5, S4S6 (concatenation of S4 and S6), S8 and S1S3S7S9] where the search for other stems could be performed.
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found pseudoknots (k-pseudoknot). The algorithm is
described in detail in (19).

Common prediction

As described above, one important problem when using a
comparative approach for RNA secondary structure pre-
diction is the high dependency of prediction results
according to the set of homologous sequences used.
To solve this problem, we implemented in Tfold a proce-
dure called Common_prediction which performs several
predictions using different sets of homologous sequences
and then select consensus stems, i.e. stems found in several
predictions.
The principle of this procedure is as follows:

Let there be K sets noted Jk (k2[1;K]) of homologous
sequences such as each set is used for predicting the sec-
ondary structure of a same given target sequence. Each
prediction returns a set of stems. For each stem Hj (j � 1)
appearing in at least one structure, a number (not null) of
appearances AHj

is associated in the different predicted
structures. A stem can appear in ‘equivalent’ forms. We
define below the notion of equivalence between stems.
Before, we need to define the relation of ‘sub-stem’,
noted Rss, between two stems:

Definition 1 Let two stems H1 and H2 be defined, respec-
tively, by (b1, e1, l1) and (b2, e2, l2), where bi, ei and li are,
respectively, the position of the first strand, the position of
the second strand and the length of Hi. The stem H1 is a
sub-stem of the stem H2 (H1RssH2) if there is an integer
d � 0 such as:

b1 � b2 ¼ e1 � e2
ðb1 þ l1Þ � ðb2 þ l2Þ ¼ ðe2 � l2Þ � ðe1 � l1Þ

�

Thus, we can deduce the equivalence relation Req

between two stems:

Definition 2 Two stems H1 and H2 are equivalent
(H1ReqH2) if H1 Rss H2 or H2 Rss H1

The common structure will be formed by stems having
a minimal number of appearances. In order to have a
secondary structure with comparable stems (‘stem
searching in target sequence’ section), a stem Hj is
selected only if AHj

> K/2. If the number of sequences
is high (greater or equal to 100), this threshold is set
to 3K/4.

RESULTS AND DISCUSSION

In this section, we present the results obtained with Tfold
on several sets of non-coding RNAs. The results are
compared with existing RNA secondary structure predic-
tion software. Two comparative analyses were performed:
in the first analysis, we tested Tfold and several programs
on selected sets of aligned RNA sequences; in the second
analysis, we tested Tfold on benchmark alignments used
by Gardner and Giegerich in (50), and compared its
results with those presented in this article.

To evaluate Tfold and the other software, we used
the measures of sensitivity and selectivity or positive
predictive value (PPV) as used by Gardner and
Giegerich in (50). The sensitivity measures the capability
to find the pairings of a reference structure. A sensitivity
of 0,90 means that 90% of pairings of the reference
structure are found. The PPV represents the probability
that a predicted pairing belongs to the reference
structure. A PPV of 0,90 means that 90% of predicted
pairings are true positives and 10% are false positives.
The sensitivity and PPV measures are given by the
following equations:

Sensitivity ¼
TP

TPþ FN
1

PPV ¼
TP

TPþ ðFP�EÞ
2

where TP is the number of pairings correctly predicted
(true positives), FN is the number of non-predicted
pairings (false negatives) and FP is the number of pre-
dicted pairings that do not appear in the structure
(false positives). Because false positive pairings are not
necessarily false, Gardner and Giegerich introduced
a value E representing the number of false positive
pairings which are not in conflict with pairings of the
reference structure.

We also used a third criterion introduced by Gardner
and Giegerich which allows the simultaneous evaluation
of the sensitivity and the PPV. This criterion, called MCC,
is a variant of Mathews correlation coefficient (51) and is
calculated as follows:

MCC ¼
ðTP � TNÞ�ðFP� EÞ � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTPþ ðFP� EÞÞðTPþ FNÞðTNþ ðFP� EÞÞ

ðTNþ FNÞ

vuut
3

where TN, the number of true negative pairings, is equal
to: (n*(n� 1)/2)�TP�FN�FP with n*(n� 1)/2 repre-
senting all possible pairings in a sequence of size n.
Thus, TN represents all possible pairings minus the true
positives, the false negatives and the false positives. MCC
varies from �1 to 1, 1 corresponding to predictions which
completely fit with the reference structure.

First analysis

Material and methods. In this analysis, we compared
our algorithm Tfold with several existing software for
RNA secondary structure prediction. We classify these
programs into two categories: the ones that do not
predict pseudoknots and the ones that are able to
predict pseudoknots.

First category of programs (programs that do not predict
pseudoknots)

. Mfold (6,52) performs the secondary structure predic-
tion of one RNA sequence by energy minimisation
using the Zuker and Stiegler algorithm (53), which is
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based on dynamic programming and is of time com-
plexity of O(N3).

. RNAalifold (54,37) is based on the Zuker and Stiegler
(53) algorithm and integrates thermodynamic and
phylogenetic information in a modified energetic
model. Its time complexity is of O(N3).

. Pfold (10,38) uses phylogenetic information, in order
to propose, given an alignment of RNA sequences, a
set of common RNA secondary structures. It is based
on context-free grammars and has a time complexity
of O(N3).

. LocARNA (55,56) uses a model based on base
pairing probabilities predicted for each sequence
independently.

. caRNAc (20,40) simultaneously performs the
alignment and the prediction of a common secondary
structure of two homologous RNA sequences, using
thermodynamic criteria and criteria of conservation
and covariation. The algorithm is close to Sankoff
approach (57) and is of complexity of O(N3).

Second category of programs (programs that predict
pseudoknots)

. ILM (14,39) takes as input an alignment of RNA
sequences and returns a common secondary structure
by selecting the stems one by one according to a model
integrating thermodynamic and mutual information.
The algorithm is based on dynamic programming
and allows the search for pseudoknots with an
average time complexity of O(N3) and a worst com-
plexity of O(N4).

. pknotsRG (58,59) uses Turner energy rules for finding
the structure of minimal free energy (including
pseudoknots) of a single sequence.

. vsfold (60,61) uses structure mapping and thermody-
namics for RNA pseudoknot prediction. The heuristic
approach takes advantage of the 50 to 30 folding direc-
tion of many biological RNA molecules and is consis-
tent with the hierarchical folding hypothesis and the
contact order model.

These software are of different types: Pfold, ILM and
caRNAc perform the prediction of a common secondary
structure of several aligned homologous sequences and
propose also the secondary structure of each sequence,
unlike RNAalifold which proposes only the common struc-
ture; as for Mfold, pknotsRG and vsfold, they use only
one sequence for predicting its structure.

Our tests were performed on the following RNA (given
here by increase order of length): tRNA (28), 5S RNA
(29), U1 RNA (30), srp RNA (31), tmRNA (32,33),
RNase P (34), 16S RNA (35) and 23S RNA (36).

For each RNA, an alignment of homologous sequences
was recovered from a database. The sequences were
dis-aligned and then realigned using ClustalW (62) with
its default parameters, in order to avoid any secondary
structure information in the alignment (note that we
could use MAFFT (63) or R-Coffee (64) as well; we
obtain minor differences in prediction efficiency when
using one or another of these three programs). For each

of the RNAs, the secondary structure prediction was per-
formed for one sequence (taken from the alignment), con-
sidered as the target sequence. The different sequences of
each RNA used in our tests are given in the
Supplementary Data file and can also be found on the
website http://tfold.ibisc.univ-evry.fr/TFold/.
Tfold was used with default parameters, as described

above in ‘Description of Tfold algorithm’ section and
shown in Figure 3.
We also used each of the software above with their

options by default. For Pfold, ILM and caRNAc, we con-
sidered the output giving the secondary structure of one
sequence (since we want to get the secondary structure of
the target sequence). In the case of RNAalifold, we used
an option of the software RNAfold (65), RNAfold -C,
in order to rebuild the secondary structure of a sequence
from the common structure. All software were carried out
considering as input all the alignment sequences, except
Mfold, pknotsRG and vsfold which were run considering
the target sequence only and caRNAc for which the
sequence bor.bro.am could not be loaded due to ambiguity
characters in the sequence.
Finally, for time complexity reasons, some tests could

not be performed. This is the case for structure prediction
of RNAse P, 16S RNA and 23S RNA with Pfold; 16S
RNA and 23S RNA with LocARNA, pknotsRG and
vsfold and of 23S RNA with ILM.

Results

Results with the first category of programs. Figure 4 gives
the sensitivity and the PPV obtained by each of the first
category of software on the different RNAs, and Figure 5
gives the correlation results.

Sensitivity results. As shown in Figure 4A, the sensitivity
of Tfold is always greater than 0.73. The average sensitivity
of Tfold is approximatively 0.8, which means that 80% of
the secondary structure pairings are found.
RNAalifold gives high sensitivities, notably for 5S,

16S and 23S RNA. LocARNA has similar results to
RNAalifold, but it gives no results for long RNA
sequences because of time complexity. The results
obtained by Pfold are very satisfactory for ‘small’ RNAs
(tRNA, 5S RNA and U1 RNA). Unfortunately, its com-
plexity does not allow its use in RNA sequences of length
>400 nt (RNAse P, 16S RNA and 23S RNA). The results
of Mfold and caRNAc are less good, with a sensitivity
�0.55. Mfold seems to have more difficulties with small
RNAs (average sensitivity of 0.3 for tRNA, 5S RNA and
U1 RNA, which are shorter than 200 nt) than for longer
RNA (average sensitivity of 0.55). Best Mfold results are
obtained for srp RNA. This could be because this RNA is
mostly composed of a long hairpin (very few loops with
more than two stems); Mfold has indeed a tendency to fold
RNA into long hairpins. Opposite to Mfold, the sensitivity
of caRNAc increases with the sequence length, except
for tRNA and 5S RNA, where the average sensitivity is
of 0.6 while it is of 0.5 for 16S and 23S.
On the whole, we can say that the results obtained by

Tfold in terms of sensitivity are very satisfactory. If we
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compare the results obtained by the different software,
Tfold results are always between the two best ones.
Tfold gives the best results for srp RNA, tmRNA and
RNase P.

PPV results. Results obtained by Tfold in term
of PPV (Figure 4B) are very good, and are similar to

the ones obtained for sensitivity. For any RNA, its
PPV is always between the two best PPV results and
is �0.90.

Concerning the other software, we observe that unlike
previously, caRNAc obtains good results. Its average PPV
is of 0.88. Pfold obtains also good results (average of 0.88
if we do not consider the RNA for which we have no

Figure 3. Tfold software interface: page allowing to set the values of the different parameters; the values by default are the recommended values.

Figure 4. Results obtained by Tfold and several other RNA secondary structure prediction software that do not predict for pseudoknots.
(A) sensitivity results. (B) PPV results.
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results). The PPV of Mfold is identical to the sensitivity,
for all considered RNA.

MCC results. Correlation results (Figure 5) confirm the
sensitivity and PPV observations. The correlation of Tfold
(average of 0.85) is very good in comparison with the
other software. Tfold is the only software which obtains
a correlation always greater than 0.80.

RNAalifold gives also good MCC results (average of
0.78). Pfold obtains the same average correlation (0.78)
as RNAalifold, but we consider its results less good,
since their quality decreases markedly with the size of
the considered RNA; furthermore, Pfold does not return
results for the longest RNA. The results of caRNAc are
�0.6. Finally, the worse results are obtained by Mfold,
with an average correlation close to 0.5.

Results with the second category of programs. Figure 6
gives the sensitivity and the PPV obtained by each of
the programs predicting pseudoknots on the different
RNAs and Figure 7 gives the correlation results. As
we can see, Tfold gives the best results in term of sensitiv-
ity, PPV and MCC, for all considered RNA, except for
tRNA.

Discussion. Results obtained by Tfold are very satisfac-
tory. For each considered RNA, its results in term of sen-
sitivity, PPV and MCC are always among the two best
results (except for U1 RNA where the PPV and the
MCC are the third best results), as we can see in Figures
4 and 5. More importantly, results obtained by Tfold are
rather homogeneous, for any considered RNA, contrary
to the other software. We remark that the performance
of the tested programs globally decreases with the size
of the considered RNA, except for 16S and 23S RNA.
In fact, prediction results are better with small
sequences because they are better aligned; moreover, 16S
RNA and 23S RNA are well conserved, so are easy to
align, which is why their prediction results are generally
good.
When we compare the results obtained globally on the

set of considered RNAs, Tfold is very good in comparison
with the other software, as shown in Table 1. It gives the
best average sensitivity (80%), the best average PPV
(93%) and the best average MCC (86%). It gives also
the best values of the minimal sensitivity, PPV and
MCC. In case of maximal sensitivity, PPV and MCC, it
is among the two best software. Besides, Tfold has the
lowest result variability in comparison to the other

Figure 6. Results obtained by Tfold and several other RNA secondary structure prediction software that predict pseudoknots. (A) sensitivity results.
(B) PPV results.

Figure 5. Correlation (MCC) results obtained by Tfold and several
other RNA secondary structure prediction software that do not
predict for pseudoknots.

Figure 7. Correlation (MCC) results obtained by Tfold and several
other RNA secondary structure prediction software that predict for
pseudoknots.
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results. This confirms the homogeneity of Tfold prediction
results, whatever the RNA.
An important point is pseudoknots. Only Tfold,

pknotsRG, vsfold and ILM search for them. In our
tests, several RNAs contain pseudoknots: tmRNA,
RNAse P, 16S RNA. Most important are tmRNA and
RNAse P which contain, respectively, 4 and 2
pseudoknots. In tmRNA, the pseudoknots are completely
overlapped in the structure. Therefore, in practice, it is
very difficult to predict the structure if the pseudoknots
are not located. Except for Tfold, which gives very good
results for these RNA, most programs show decreasing
result quality, even ILM, pknotsRG and vsfold. In (50),
Gardner and Giegerich remarked that often, when a
software searches for pseudoknots, its results for the
(whole) structure prediction decrease in quality. It is
notably the case of ILM. On the contrary, Tfold results
remain absolutely unchanged when pseudoknots are
searched for, since pseudoknots are predicted once all
compatible stems (stems that do not overlap) are found.
An interesting remark about ILM software is that its

(sensitivity/specificity/MCC) curve shows the same fluctu-
ations as Tfold (except for tmRNA) with an average gap
of 0.12 for sensitivity, 0.2 for PPV and 0.16 for MCC.
This could be because Tfold and ILM are close, notably
by their recursive approach.

Second analysis

Material and methods. Gardner and Giegerich in (50)
performed an evaluation of several RNA secondary struc-
ture prediction software, on different RNA. The software
compared in this article were subdivided into two
categories: RNAfold (65), Mfold (6) and Sfold (66)
which use a single sequence and RNAalifold (11), Pfold
(10), ILM (14), caRNAc (20), Foldalign (21) and
Dynalign (22) which use multiple sequences.
We then performed a second evaluation of Tfold, using

sequence alignments used in (50). We compared the results
we obtained with Tfold with the results obtained by
Gardner and Giegerich using a set of software. We con-
sidered only the results of the second category of software,
since they are based on the same approach as Tfold.

We also considered Mfold, which is the most well-known
software in its category.

We considered the same target sequences as in (50):
tRNA and RNAse P of Saccharomyces cerevisiae and
16S RNA and 23S RNA of E. coli. For each RNA, two
sets of homologous sequences were used: one with an
identity rate between 80% and 90% (strong identity)
and another more variable, with an identity rate between
60% and 80% (average identity).

The reference structure used in (50) to evaluate the
software does not contain all pairings of the original
known structures: some pairings were removed in order
not to penalize the software which do not search for them.
This is the case with pairings belonging to pseudoknots.
It is also the case with pairings that are conserved in only a
few sequences (less than half of sequences).

This is not the case of Tfold, which finds pairings even
if they form pseudoknots or are conserved in only few
sequences (see ‘variable area treatment’ and ‘common pre-
diction’ sections). Therefore, we used for our tests on
Tfold the original reference structures (with all their
pairings, including pseudoknots). As an example, the
reference structure we considered for testing Tfold on
RNAse P (using a set of homologous sequences with an
average variability) contains 110 pairings, while the struc-
ture used by Gardner and Giegerich for RNAalifold
contains only 71 pairings and the one used for Pfold
contains 54 pairings.

Results and discussion. Figure 8 illustrates correlation
results obtained by Tfold on sets of sequences with high
identity and sets of sequences with average identity,
compared with correlation results obtained in (50).

Results obtained by Tfold are wholly satisfactory. They
are in the ‘top three’ in case of sequences of high identity
(Figure 8A) and in the ‘top two’ in case of sequences with
average identity (Figure 8B). Tfold results are better on
homologous sequences with an identity rate between
60% and 80% (average identity) than on homologous
sequences with high identity. This is due to the fact
that the covariation criterion (compensatory mutations)
used in our model works better when sequence variability
increases.

Table 1. Average, minimum and maximum values of sensitivity, PPV and correlation (MCC) obtained by each of software on considered RNA

(tRNA, 5S RNA, U1 RNA, srp RNA, tmRNA, RNase P, 16S RNA and 23S RNA)

Sensitivity PPV MCC

avg min max avg min max avg min max

Mfold 0.45 0.17 0.64 0.44 0.17 0.64 0.45 0.17 0.63
LocARNA a 0.72 0.54 1 0.84 0.72 1 0.77 0.62 1
RNAalifold 0.73 0.55 1 0.86 0.66 1 0.79 0.64 1
Pfold a 0.76 0.47 1 0.89 0.79 1 0.82 0.61 1
caRNAc 0.49 0.24 0.64 0.88 0.69 1 0.62 0.40 0.80
ILMa 0.64 0.51 0.8 0.72 0.48 1 0.68 0.50 0.89
pknotsRG a 0.53 0.17 1 0.53 0.17 1 0.53 0.17 1
vsfold a 0.35 0.08 0.90 0.44 0.12 1 0.39 0.09 0.95
Tfold 0.80 0.74 0.95 0.93 0.87 1 0.86 0.81 0.95

aThese software do not provide results for all considered RNAs.
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Tfold continues to obtain homogeneous results
whatever type of considered RNA, particularly when
considering sequences of average homology.

An important point to consider here is that Tfold,
unlike the other software, can search for all pairings,
including pseudoknots and pairings with a low degree of
conservation. Therefore, in order to have a better measure
of the ability of Tfold to predict the secondary structure of
a given RNA sequence, we calculated new MCC values
for each software (‘adjusted MCC’) considering all
pairings of the original known structure. Therefore, the
same reference structure is used for all software.

Figure 9 gives the adjusted correlations obtained by the
different software and RNA.

The adjustment concerns mostly RNAse P. Thus, for
this RNA, Tfold now obtains the best results for the
two sets of sequences.

Results obtained by Tfold are very good. Tfold gives the
best average and the best minimum MCC in case of
sequences of average identity, as shown in Table 2.
Pfold gives higher average and minimum MCC on

sequences of average identity before adjustment, but
these results concern only tRNA and RNAse P, when
Tfold gives results for all considered RNAs, as shown in
Figure 8. Tfold results are also very robust: they are
homogeneous whatever the considered RNA.

CONCLUSION

Determining non-coding RNA structures is a very impor-
tant research problem, and biologists need help from
computational tools to perform this task. In this article,
we presented an efficient algorithm and its associated tool
called Tfold for predicting non-coding RNA secondary
structures. It is a complete and interactive system, where
users can carry out Tfold and its components in different
ways, change different parameters values, set some known
stems which are taken into account by the system, choose
to get several possible structures or only one, search for
pseudoknots or not, etc. The software can be used via the
web site http://tfold.ibisc.univ-evry.fr/TFold/.

Figure 9. Adjusted MCC results obtained by Tfold and by software tested in (50) on sets of sequences with high identity (A) and on sets of
sequences with average identity (B).

Figure 8. Correlation (MCC) results obtained by Tfold and by software tested in (50) on sets of sequences with high identity (A) and on sets of
sequences with average identity (B).
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The principal characteristics of Tfold are:

. It searches for most stable to less stable stems, using
criteria of length, stability, conservation and covaria-
tion; this approach models well the process for RNA
folding.

. It has a complexity of O(n2), when other existing
software have complexities at least of O(n3).

. It searches for pseudoknots with the same complexity
(O(n2)). Besides, the quality of its results still remain
good even when pseudoknots are searched for, which
is not the case of the (few) other programs that also
offer this possibility [as stated in (50)].

. It searches for stems, while almost existing algorithms
search for pairings.

. It offers the possibility to search for alternative
structures.

. It can take into account stems already known (set
by the user); these stems are considered as anchoring
points, thus improving the prediction.

. It allows the automatic selection from a given align-
ment of a subset of homologous sequences to use, in
order to avoid bad prediction results because of bad
alignment quality and/or non-adequate sequences.

All these characteristics make Tfold competitive in
terms of result quality and complexity (in time). Tfold
was tested on several RNA (tRNA, 5S RNA, U1 RNA,
srp RNA, tmRNA, RNAse P, 16S RNA and 23S RNA),
with lengths varying from 76 to 2904 nt. The predictions
have an average sensitivity �80% and an average PPV
�90%, which means that Tfold finds 8 pairings among
10 and that when a pairing is predicted, it has 9 chances
on 10 to be a good one.
Tfold was compared with several existing tools

for RNA secondary structure prediction: Mfold,
RNAalifold, Tfold, ILM, caRNAc, LocARNA,
pknotsRG, vsfold, Foldalign and Dynalign, using differ-
ent RNA and different sets of homologous sequences. An
important characteristic and quality of Tfold comparing
to these software is that it is robust in terms of result
quality and time complexity. The results are globally
homogeneous for any kind of considered RNA

sequences: small or long sequences, conserved or very
variable sequences, structures with or without pseudo-
knots, etc. Besides, when the sequences are not highly
conserved, Tfold is the only software which obtains a cor-
relation always greater than 0.80 for any RNA.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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